Механизм мышечного сокращения биохимия. Биохимия сокращения и расслабления

Тема 9. Биохимия мышечного сокращения.

Тема 10. Энергетическое обеспечение мышечного сокращения.
Тема 9. БИОХИМИЯ МЫШЕЧНОГО СОКРАЩЕНИЯ.

1. Общая характеристика мышц. Строение мышечных клеток.

2. Строение миофибрилл.

3. Сокращение и расслабление мышцы.
§ 1. Общая характеристика мышц. Строение мышечных клеток.

Учение о мышцах – это важнейший раздел биохимии, имеющий исключительное значение для спортивной биохимии.

Важнейшей особенностью функционирования мышц является то, что в процессе мышечного сокращения происходит непосредственное превращение химической энергии АТФ в механическую энергию сокращения мышц. Это явление не имеет аналогов в технике и присуще только живым организмам.

У животных и человека два основных типа мышц: поперечнополосатые и гладкие , причем поперечнополосатые мышцы делятся на два вида – скелетные и сердечные . Гладкие мышцы характерны для внутренних органов, кровеносных сосудов.

Поперечнополосатые мышцы состоят из тысяч мышечных клеток – волокон. Волокна объединены соединительно-тканными прослойками и такой же оболочкой – фасцией. Мышечные волокна – миоциты - представляют собой сильно вытянутые многоядерные клетки гигантских размеров от 0,1 до 10см длиной и толщиной около 0,1 – 0,2 мм.

Миоцит состоит из всех обязательных компонентов клетки. Особенностью мышечного волокна является то, что внутри эта клетка содержит большое количество сократительных элементов - миофибрилл. Как и другие клетки тела миоциты содержат ядро, причем, у клеток поперечнополосатых мышц ядер несколько, рибосомы, митохондрии, лизосомы, цитоплазматическую сеть.

Цитоплазматическая сеть называется в этих клетках саркоплазматической сетью. Она связана с помощью особых трубочек, называемых Т-трубочками, с клеточной мембранной – сарколеммой. Особо следует выделить в саркоплазматической сети пузырьки, называемые цистернами. Они содержат большое количество ионов кальция. С помощью специального фермента кальций накачивается в цистерны. Этот механизм называется кальциевым насосом и необходим для сокращения мышцы.

Цитоплазма или саркоплазма миоцитов содержит большое количество белков. Здесь немало активных ферментов, среди которых важнейшими являются ферменты гликолиза , креатинкиназа. Немалое значение имеет белок миоглобин, сохраняющий кислород в мышцах.

Кроме белков в цитоплазме мышечных клеток содержатся фосфогены – АТФ, АДФ, АМФ, а также креатинфосфат, необходимые для нормального снабжения мышцы энергией.

Основной углевод мышечной ткани – гликоген. Его концентрация достигает 3%. Свободная глюкоза в саркоплазме встречается в малых концентрациях. В тренируемых на выносливость мышцах накапливается запасной жир .

Снаружи сарколемма окружена нитями белка – коллагена. Мышечное волокно растягивается и возвращается в исходное состояние за счет упругих сил, возникающих в коллагеновой оболочке.


§ 2. Сократительные элементы (миофибриллы ).

Сократительные элементы – миофибриллы – занимают большую часть объема миоцитов. В нетренированных мышцах миофибриллы расположены, рассеяно, а тренированных они сгруппированы в пучки, называемые полями Конгейма .

Микроскопическое изучение строения миофибрилл показало, что они состоят из чередующихся светлых и темных участков или дисков. В мышечных клетках миофибриллы располагаются таким образом, что светлые и темные участки рядом расположенных миофибрилл совпадают, что создает видимую под микроскопом поперечную исчертанность всего мышечного волокна.

Использование электронного микроскопа с очень большим увеличением позволило расшифровать строение миофибрилл и установить причины наличия у них светлых и темных участков. Было обнаружено, что миофибриллы являются сложными структурами, построенными в свою очередь, из большого числа мышечных нитей дух типов – толстых и тонких. Толстые в два раза толще тонких, соответственно 15 и 7 нм.

Состоят миофибриллы из чередующихся пучков параллельно расположенных толстых и тонких нитей, которые концами заходят друг на друга.

Участок миофибриллы, состоящий из толстых нитей и находящимися между ними концов тонких нитей, обладает двойным лучепреломлением. Под микроскопом эти участки кажутся темными и получили название анизотропных или темных дисков (А-диски).

Тонкие участки состоят из тонких нитей и выглядят светлыми. Такие участки называются изотропными или светлыми дисками (I -диски). В середине пучка тонких нитей поперечно располагается тонкая пластинка из белка, которая фиксирует положение мышечных нитей в пространстве. Эта пластинка хорошо видна под микроскопом и названа Z -пластинкой или Z -линией .

Участок между соседними Z-линиями называется саркомер. Каждая миофибрилла состоит из тысяч саркомеров.

Изучение химического состава миофибрилл показало, что тонкие и толстые нити образованы белками.

Толстые нити состоят из белка миозина. Эти белки образуют двойную спираль с глобулярной головкой на конце. Миозиновые головки обладают АТФазной активностью, то есть способностью расщеплять АТФ . Второй участок миозина обеспечивает связь толстых нитей с тонкими.

Тонкие нити состоят из белков актина, тропонина и тропомиозина.

Основной белок в данном случае актин. Он обладает двумя важнейшими свойствами:


  • образует фибриллярный актин, способный к быстрой полимеризации;

  • актин способен соединяться с миозиновыми головками поперечными мостиками.
Другие белки тонких нитей помогают актину осуществлять его функции.

На странице 44 на рисунке А. подробно показано строение мышц.

Строение и механизм сокращения скелетных мышц.

§ 3. Механизм мышечного сокращения и расслабления.
Механизм мышечного сокращения до настоящего времени раскрыт не полностью.

Достоверно известно следующее.

1. Источником энергии для мышечного сокращения являются молекулы АТФ.

2. Гидролиз АТФ катализируется при мышечном сокращении миозином, обладающим ферментативной активностью.

3. Пусковым механизмом мышечного сокращения является повышение концентрации ионов кальция в саркоплазме миоцитов, вызываемое нервным двигательным импульсом.

4. Во время мышечного сокращения между тонкими и толстыми нитями миофибрилл возникают поперечные мостики или спайки.

5. Во время мышечного сокращения происходит скольжение тонких нитей вдоль толстых, что приводит к укорочению миофибрилл и всего мышечного волокна в целом.

Гипотез объясняющих механизм мышечного сокращения много, но наиболее обоснованной является так называемая гипотеза (теория) «скользящих нитей» или «гребная гипотеза».

В покоящейся мышце тонкие и толстые нити находятся в разъединенном состоянии.

Под воздействием нервного импульса ионы кальция выходят из цистерн саркоплазматической сети и присоединяются к белку тонких нитей – тропонину. Этот белок меняет свою конфигурацию и меняет конфигурацию актина. В результате образуется поперечный мостик между актином тонких нитей и миозином толстых нитей. При этом повышается АТФазная активность миозина. Миозин расщепляет АТФ и за счет выделившейся при этом энергии миозиновая головка подобно шарниру или веслу лодки поворачивается, что приводит к скольжению мышечных нитей навстречу друг другу.

Совершив поворот, мостики между нитями разрываются. АТФазная активность миозина резко снижается, прекращается гидролиз АТФ. Однако при дальнейшем поступлении нервного импульса поперечные мостики вновь образуются, так как процесс, описанный выше, повторяется вновь.

Факторы, обеспечивающие мышечное сокращение:


Сродство комплекса «миозин-АТФ» к актину очень низкое;


Сродство комплекса «миозин-АДФ» к актину очень высокое;


актин ускоряет отщепление АДФ и Ф от миозина, что сопровождается конформационной перестройкой (поворот головки миозина).


Стадии мышечного сокращения:


Фиксация АТФ на головке миозина;


Гидролиз АТФ. Продукты гидролиза (АДФ и Ф) остаются фиксированными, а выделившаяся энергия аккумулируется в головке. Мышца готова к сокращению;


Образование прочного комплекса «актин-миозин», разрушающегося только при сорбции новой молекулы АТФ;


Конформационные изменения молекулы миозина, в результате которых происходит поворот головки миозина. Освобождение продуктов реакции (АДФ и Ф) из активного центра головки миозина.


Белки - регуляторы мышечного сокращения:


1) тропомиозин - фибриллярный белок, имеет вид a-спирали. В тонкой нити на 1 молекулу тропомиозина приходится 7 молекул G-актина. Располагается в желобке между 2 спиралями G-актина. Соединяется «конец в конец», цепочка непрерывная. Молекула тропомиозина закрывает активные центры связывания актина на поверхности глобул актина;


2) тропонин - глобулярный белок, состоящий из 3 субъединиц: тропонина «Т», тропонина «С» и тропонина «I». Располагается на тропомиозине с равными промежутками, длина которых равна длине молекулы тропомиозина. Тропонин Т (ТнТ) - отвечает за связывание тропонина с тропомиозином, через тропонин «Т» конформационные изменения тропонина передаются на тропомиозин. Тропонин С (ТнС) - Ca2+- связывающая субъединица, содержит 4 участка для связывания кальция, по строению похожа на белок кальмодулин. Тропонин I (ТнI) - ингибиторная субъединица - ненастоящий ингибитор, создающий лишь пространственное препятствие, мешающее взаимодействию актина и миозина в момент, когда тропонин «С» не связан с Са2+.


Регуляция сокращения и расслабления мышц в живой клетке:


Мышечное сокращение начинается с нервного импульса. Под воздействием ацетилхолина развивается возбуждение клеточной мембраны и резко повышается ее проницаемость для Са2+;


Са2+ поступает в цитоплазму мышечной клетки (саркоплазму) из депо - цистерн цитоплазматического ретикулума. Концентрация Са2+ в саркоплазме мгновенно увеличивается;


Кальций связывается с тропонином «С». Возникают конформационные изменения молекулы тропонина, в результате устраняется пространственное препятствие в виде тропонина «I», так как молекула тропомиозина оттягивается в сторону и открывает на поверхности актина миозин-связывающие центры. Дальше мышечное сокращение идет по схеме.


  • Механизм мышечного сокращения .
    Регуляция сокращения и расслабления мышц в живой клетке: - мышечное сокращение начинается с нервного импульса.


  • Механизм мышечного сокращения . Регуляция сокращения и расслабления мышц .
    Структура поперечно-полосатой мышечной ткани. Поперечно-полосатая мускулатура состоит из чередующихся толстых и тонких нитей.


  • Механизм мышечного сокращения . Регуляция сокращения и расслабления мышц .
    - транспорт гормонов и других метаболитов; - защита от чужеродных агентов; - регуляция температуры тела путем перераспределения тепла в организме.


  • В условиях интенсивной мышечной
    Механизм мышечного сокращения . Регуляция сокращения и расслабления мышц .


  • В условиях интенсивной мышечной работы кислород не успевает поступать в клетку. При этом распад угл... подробнее ».
    Механизм мышечного сокращения . Регуляция сокращения и расслабления мышц .


  • В условиях интенсивной мышечной работы кислород не успевает поступать в клетку. При этом распад угл... подробнее ».
    Механизм мышечного сокращения . Регуляция сокращения и расслабления мышц .


  • Механизм сокращений и расслаблений скелетных мышц называется мышечным насосом.


  • Активное сокращение мышцы в изометрическом и изотоническом режимах. Изометрические условия– длина мышцы фиксирована, так что когда мышца сокращается в тех местах, где она
    к ее первоначальной длине.


  • Механизм принудительного продвижения венозной крови к сердцу с преодолением сил гравитации под воздействием ритмических сокращений и расслаблений скелетных мышц называется мышечным насосом.


  • Механизм принудительного продвижения венозной крови к сердцу с преодолением сил гравитации под воздействием ритмических сокращений и расслаблений скелетных мышц называется мышечным насосом.

Найдено похожих страниц:10


Рассмотрим, к чему сводятся представления о механизме попеременного сокращения и расслабления мышц. В настоящее время принято считать, что биохимический цикл мышечного сокращения состоит из 5 стадий (рис. 20.8):

1) миозиновая «головка» может гидролизовать АТФ до АДФ и Н 3 РО 4 (P i), но не обеспечивает освобождения продуктов гидролиза . Поэтому данный процесс носит скорее стехиометрический, чем каталитический, характер (см. рис. 20.8, а);

По современным представлениям, в покоящейся мышце (в миофибрил-лах и межфибриллярном пространстве) концентрация ионов Са 2+ поддерживается ниже пороговой величины в результате связывания их структурами (трубочками и пузырьками) саркоплазматической сети и так называемой Т-системой при участии особого Са 2+ -связывающего белка , получившего название кальсеквестрина, входящего в состав этих структур.

Возможность пребывания живой мышцы в расслабленном состоянии при наличии в ней достаточно высокой концентрации АТФ объясняется снижением в результате действия кальциевой помпы концентрации ионов Са 2+ в среде, окружающей миофибриллы, ниже того предела, при котором еще возможны проявление АТФазной активности и сократимость акто-миозиновых структур волокна. Быстрое сокращение мышечного волокна при его раздражении от нерва (или электрическим током) является результатом внезапного изменения проницаемости мембран и как следствие выхода из цистерн и трубочек саркоплазматической сети и Т-системы некоторого количества ионов Са 2+ в саркоплазму.

Как отмечалось, «чувствительность» актомиозиновой системы к ионам Са 2+ (т.е. потеря актомиозином способности расщеплять АТФ и сокращаться в присутствии АТФ при снижении концентрации ионов Са 2+ до 10 –7 М) обусловлена присутствием в контрактильной системе (на нитях F-акти-на)

Механизм мышечного сокращения

Передача возбуждения с двигательного мотонейрона на мышечное волокно происходит с помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецегггором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ. При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна, и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает потенциал действия (ПД), который распространяется в обе стороны со скоростью примерно 3-5 м/с при температуре 36 °С.

Вторым этапом является распространение ПД внутрь мышечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна. Т-система тесно контактирует с терминальными цистернами саркоплазматической сети двух соседних саркомеров. Электрическая стимуляция места контакта приводит к активации ферментов, расположенных в месте контакта, и образованию инозитолтри- фосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са 2+ из цистерн и повышению внутриклеточной концентрации Са 2+ с 107 до 105 М. Совокупность процессов, приводящих к повышению внутриклеточной концентрации Са 2+ , составляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электрического сигнала ПД в химический - повышение внутриклеточной концентрации Са 2+ , т. е. электрохимическое преобразование.

При повышении внутриклеточной концентрации ионов Са 2+ тропомиозин смещается в желобок между нитями актина, при этом на актиновых нитях открываются участки, с которыми могут взаимодействовать поперечные мостики миозина. Это смещение тропомиозина обусловлено изменением конформации молекулы белка тропонина при связывании Са 2+ . Следовательно, участие ионов Са 2 ~ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин.

Следующим этапом электромеханического сопряжения является присоединение головки поперечного мостика к актиновому филаменту, к первому из нескольких последовательно расположенных стабильных центров. При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько активных центров, которые последовательно взаимодействуют с соответствующими центрами на актиновом филаменте. Вращение головки приводит к увеличению упругой эластической тяги шейки поперечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок поперечных мостиков находится в соединении с актиновым филаментом, другая свободна, т. е. существует последовательность их взаимодействия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хсмомеханическое преобразование.

Последовательная реакция соединения и разъединения головок поперечных мостиков с актиновым филаментом приводит к скольжению тонких и толстых нитей относительно друг друга и уменьшению размеров саркомера и общей длины мышцы, что является шестым этапом. Совокупность описанных процессов составляет сущность теории скольжения нитей.

Механизм мышечного расслабления

Описанные механизмы укорочения мышечного волокна позволяют предположить, что для расслабления в первую очередь необходимо понижение концентрации ионов Са 2+ .Экспериментально было доказано, что саркоплазматическая сеть имеет специальный механизм - кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фосфатом, который образуется при гидролизе АТФ, а энергообеспечение работы кальциевого насоса происходит также за счет энергии, образующейся при гидролизе АТФ. Таким образом, АТФ является вторым важнейшим фактором, абсолютно необходимым для процесса расслабления.

Кроме того, после мышечных сокращений тонкие протофибриллы стремятся вернуться в свое прежнее положение за счет упругих свойств.

Некоторое время после смерти мышцы остаются мягкими вследствие прекращения тонического влияния мотонейронов. Затем концентрация

АТФ снижается ниже критического уровня и возможность разъединения головки миозина с актиновым филаментом исчезает. Возникает явление трупного окоченения с выраженной ригидностью скелетных мышц.

Особенности строения гладких мышц

Гладкие мышцы внутренних органов по характеру иннервации, возбуждения и сокращения существенно отличаются от скелетных. Волны возбуждения и сокращения протекают в гладких мышцах в очень замедленном темпе. Развитие состояния "неутомляемого" тонуса гладких мышц связано, как и в тонических скелетных волокнах, с замедленностью сократительных волн, сливающихся друг с другом даже при редких ритмических раздражениях. Для гладких мышц характерна также способность к автоматизму, т. е. к деятельности, не связанной с поступлением в мышцы нервных импульсов из центральной нервной системы. Установлено, что способностью к ритмическому самопроизвольному возбуждению и сокращению обладают не только нервные клетки, имеющиеся в гладких мышцах, но и сами гладкомышечные клетки.

Своеобразие сократительной функции гладких мышц позвоночных животных определяется не только особенностями их иннервации и гистологического строения, но и спецификой их химического состава: более низким содержанием контрактильных белков (актомиозина), макроэргических соединений, в частности АТФ, низкой АТФ-азной активностью миозина, наличием в них водорастворимой модификации актомиозина - тоноактомиозина и т. д.

Существенное значение для организма имеет способность гладких мышц изменять длину без повышения напряжения (наполнение полых органов, например мочевого пузыря, желудка и др.).

Подвижность является характерным свойством всех форм жизни. Направленное движение имеет место при расхождении хромосом в процессе клеточного деления, активном транспорте молекул, пе­ремещении рибосом в ходе белкового синтеза, сокращении и рас­слаблении мышц. Мышечное сокращение – наиболее совершенная форма биологической подвижности. В основе любого движения, в том числе и мышечного, лежат общие молекулярные механизмы.

У человека различают несколько видов мышечной ткани. По­перечно-полосатая мышечная ткань составляет мышцы скелета (скелетные мышцы, которые мы можем сокращать произвольно). Гладкая мышечная ткань входит в состав мышц внутренних орга­нов: желудочно-кишечного тракта, бронхов, мочевыводящих путей, кровеносных сосудов. Эти мышцы сокращаются непроиз­вольно, независимо от нашего сознания.

В данной лекции мы рассмотрим строение и процессы сокращения и расслабления скелетных мышц, поскольку именно они пред­ставляют наибольший интерес для биохимии спорта.

Механизм мышечного сокращения до настоящего времени раскрыт не полностью.

Достоверно известно следующее.

1. Источником энергии для мышечного сокращения являются молекулы АТФ.

2. Гидролиз АТФ катализируется при мышечном сокращении миозином, обладающим ферментативной активностью.

3. Пусковым механизмом мышечного сокращения является повышение концентрации ионов кальция в саркоплазме миоцитов, вызываемое нервным двигательным импульсом.

4. Во время мышечного сокращения между тонкими и толстыми нитями миофибрилл возникают поперечные мостики или спайки.

5. Во время мышечного сокращения происходит скольжение тонких нитей вдоль толстых, что приводит к укорочению миофибрилл и всего мышечного волокна в целом.

Гипотез объясняющих механизм мышечного сокращения много, но наиболее обоснованной является так называемая гипотеза (теория) «скользящих нитей» или «гребная гипотеза».

В покоящейся мышце тонкие и толстые нити находятся в разъединенном состоянии.

Под воздействием нервного импульса ионы кальция выходят из цистерн саркоплазматической сети и присоединяются к белку тонких нитей – тропонину. Этот белок меняет свою конфигурацию и меняет конфигурацию актина. В результате образуется поперечный мостик между актином тонких нитей и миозином толстых нитей. При этом повышается АТФазная активность миозина. Миозин расщепляет АТФ и за счет выделившейся при этом энергии миозиновая головка подобно шарниру или веслу лодки поворачивается, что приводит к скольжению мышечных нитей навстречу друг другу.

Совершив поворот, мостики между нитями разрываются. АТФазная активность миозина резко снижается, прекращается гидролиз АТФ. Однако при дальнейшем поступлении нервного импульса поперечные мостики вновь образуются, так как процесс, описанный выше, повторяется вновь.

В каждом цикле сокращения расходуется 1 молекула АТФ.

В основе мышечного сокращения лежат два процесса:

Спиральное скручивание сократительных белков;

Циклически повторяющееся образование и диссоциация ком­плекса между цепью миозина и актином.

Мышечное сокращение инициируется приходом потенциала действия на концевую пластинку двигательного нерва, где выделяется нейрогормон ацетилхолин, функцией которого яв­ляется передача импульсов. Сначала ацетилхолин взаимодействует с ацетилхолиновыми рецепторами, что приводит к распростране­нию потенциала действия вдоль сарколеммы. Все это вызывает увеличение проницаемости сарколеммы для катионов Na + , которые устремляются внутрь мышечного волокна, нейтрализуя отрицатель­ный заряд на внутренней поверхности сарколеммы. С сарколеммой связаны поперечные трубочки саркоплазматического ретикулума, по которым распространяется волна возбуждения. От трубочек волна возбуждения передается мембранам пузырьков и цистерн, которые оплетают миофибриллы на участках, где происходит взаи­модействие актиновых и миозиновых нитей. При передаче сигнала на цистерны саркоплазматического ретикулума, последние начина­ют освобождать находящийся в них Са 2+ . Высвобожденный Са 2+ связывается с Тн-С, что вызывает конформационные сдвиги, передающиеся на тропомиозин и далее на актин. Актин как бы освобождается из комплекса с компонентами тонких филаментов, в котором он находился. Далее актин взаимодействует с мио­зином, и результатом такого взаимодействия является образова­ние спайки, что делает возможным движение тонких нитей вдоль толстых.

Генерация силы (укорочение) обусловлена характером взаи­модействия между миозином и актином. На миозиновом стержне имеется подвижный шарнир, в области которого происходит по­ворот при связывании глобулярной головки миозина с опреде­ленным участком актина. Именно такие повороты, происходящие одновременно в многочисленных участках взаимодействия миозина и актина, являются причиной втягивания актиновых филаментов (тонких нитей) в Н-зону. Здесь они контактируют (при макси­мальном укорочении) или даже перекрываются друг с другом, как это показано на рисунке.




в

Рисунок. Механизм сокращения: а – состояние покоя; б – умеренное сокращение; в – максимальное сокращение

Энергию для этого процесса поставляет гидролиз АТФ. Когда АТФ присоединяется к головке молекулы миозина, где локализо­ван активный центр миозиновой АТФазы, связи между тонкой и толстой нитями не образуется. Появившийся катион кальция нейтрализует отрицательный заряд АТФ, способствуя сближению с активным центром миозиновой АТФазы. В результате происхо­дит фосфорилирование миозина, т. е. миозин заряжается энергией, которая используется для образования спайки с актином и для продвижения тонкой нити. После того как тонкая нить про­двинется на один «шаг», АДФ и фосфорная кислота отщепляются от актомиозинового комплекса. Затем к миозиновой головке присоединяется новая молекула АТФ, и весь процесс повторяет­ся со следующей головкой молекулы миозина.

Затрата АТФ необходима и для расслабления мышц. После прекращения действия двигательного импульса Са 2+ переходит в цистерны саркоплазматического ретикулума. Тн-С теряет свя­занный с ним кальций, следствием этого являются конформаци-онные сдвиги в комплексе тропонин-тропомиозин, и Тн-I снова закрывает активные центры актина, делая их неспособными взаимодействовать с миозином. Концентрация Са 2+ в области со­кратительных белков становится ниже пороговой, и мышечные волокна теряют способность образовывать актомиозин.

В этих условиях эластические силы стромы, деформированной в момент сокращения, берут верх, и мышца расслабляется. При этом тонкие нити извлекаются из пространства между толстыми нитями диска А, зона Н и диск I приобретают первоначальную длину, линии Z отдаляются друг от друга на прежнее расстояние. Мышца становится тоньше и длиннее.

Скорость гидролиза АТФ при мышечной работе огромна: до 10 мк моль на 1 г мышцы за 1 мин. Общие запасы АТФ невелики, поэтому для обеспечения нормальной работы мышц АТФ должна восстанавливаться с той же скоростью, с какой она расходуется.

Расслабление мышцы происходит после прекращения поступления длительного нервного импульса. При этом проницаемость стенки цистерн саркоплазматической сети уменьшается, и ионы кальция под действием кальциевого насоса, используя энергию АТФ, уходят в цистерны. Удаление ионов кальция в цистерны ретикулума после прекращения двигательного импульса требует значительных энерготрат. Так как удаление ионов кальция происходит в сторону более высокой концетрации, т.е. против осмотического градиента, то на удаление каждого иона кальция затрачивается две молекулы АТФ. Концентрация ионов кальция в саркоплазме быстро снижается до исходного уровня. Белки вновь приобретают конформацию характерную для состояния покоя.

Таким образом, и процесс мышечного сокращения и процесс мышечного расслабления – это активные процессы, идущие с затратами энергии в виде молекул АТФ,

В гладких мышцах нет миофибрилл, которые состоят из нескольких сотен саркомеров. Тонкие нити присоединяются к сарколемме, толстые находятся внутри волокон. Ионы кальция также играют роль в сокращении, но поступают в мышцу не из цистерн, а из внеклеточного вещества, поскольку в гладких мышцах отсутствуют цистерны с ионами калькия. Этот процесс медленный и поэтому медленно работают гладкие мышцы.